Fly This

“Bow-Legged Sailor”

“You're a sweetheart—if there ever was one!” Aye, aye, me hearties! Seems as if that liltin' l'il chanty just describes this latest Garami stick model. So we'll stow the gab and pipe all hands on deck. Lay out your balsa, lads, and “fall to.” Yo! Ho! And a bottle of—banana oil!

By Louis Garami

MAYBE we seem to be stretching things a bit when we call this stick job the Bow-Legged Sailor. But you must admit that those Navy-type trouser-legs that serve as landing struts do look sort of seagoingish. So, balsa butchers, we'll stick to our name whether you like it or not.

And anyway, didn't Shakespeare or Chaucer or Ring Lardner—or some similar classician—ask “What’s in a name?” And didn't the same chap answer himself by saying that “A rose by any other name smells just as sweet”? Or am I just too, too, wrong?

But of course if the word Sailor isn’t far enough along in the dictionary to suit you, turn to the next letter of the alphabet and call the ship Tamale. For this model is a peppy performer that will bring tears of envy to the eyes of any modeler who sees it fly. Your pals will look at the ship in wonderment and each will say to himself, “Gosh! Why won't my stick job fly like that?”

Stability is the keynote of the Bow-Legged Sailor. This, of course, is because of the high wing. The profile body is used for better appearance, and the sheet balsa tail was designed for simplicity and strength.

BUILDING THE “SAILOR”

So now let's clean last month's shavings from our benches and start work. Look at the plans on the next two pages so that you know what you're going to do. Then trace the body outline onto a 1/8" sheet of soft balsa. Cut out the piece with a sharp razor blade. Take your time in cutting the corners, and be sure that you cut cleanly. If you should go over the line at any point, however, a drop of cement applied there will help overcome your mistake.

Smooth the shaped fuselage with fine sandpaper. And at the same time, check the flat upper edge of the stick (where the elevator is to fit) to be sure it's at right angles with the sides.

The next step is to insert the propeller bearing. We use a length of 1/16" (outside diameter) aluminum tubing for this, and have always found it simple, foolproof, and satisfactory. Since a smoothly revolving prop is highly necessary, however, we'd suggest that if you have found a better type of prop bearing, that should be used, instead. Try out several types, and finally stick to the one that seems to serve you the best.

After installing the bearing, coat the nose of the ship with cement for added strength. Then shape the wire parts as shown on the plans. If you cannot dig up a piece of the very fine .01 wire specified for the tail skids, use a sliver of bamboo.

Cement the landing gear and rear hook several times, until a skin is formed at each point of contact.

The wooden parts of the landing gear—the sailboat parts—are glued direct to the wire. Do not cement the horizontal landing gear strut to the body, because free movement is needed here to absorb the shocks of landing. Make the wheels from sheet balsa—a pair of dividers will be found of value both for measuring and cutting them—and after slipping them onto the axles a drop of cement applied at the ends of the wire will keep them from coming off.

In carving the prop, you should work slowly and carefully. Use an extremely sharp knife. And if you're in a particular hurry or don't classify yourself as a good prop-shaper-upper, a "rough" ready-made 6" balsa airscrew will only cost you a few cents at your dealer's shop. Just shape out the blades and smooth off the rough spots, and add the eyelet bushings and washers.

WINGS AND TAIL

The wing is constructed in two halves. First cut out all the ribs, pin them together side by side, and sandpaper them. No spar is used—just lay the leading and trailing edges down and glue the ribs on top of them one-and-a-half inches apart. While they are drying cut the balsa tips, so they'll be ready to be cemented to the last ribs at the angle shown on the plan.

Cover the wing with jap tissue—or are you a boycotter? Anyway, cut four pieces of some kind of tissue slightly bigger than each wing panel. Then, using dope for adhesive, work from one rib to the next and stick the paper on the framework. After the covering is done, spray the panels with water on both sides and allow the (Continued on page 66)
job to dry. The spraying, of course, tightens up the wrinkled paper into a smooth surface. Do not dope the wings.

For the tail surfaces, use soft 1/32" thick sheet balsa. With a trusty (not rusty) razor blade, cut out the elevator and cement it to the top edge of the body. Then shape the rudder and glue it in place on top of the elevator.

Now attach the two wings to the body. The slightly tilted ribs in the center allow the tips to be raised to the desired dihedral angle. Glue and pin the wings in proper position, and insert the two small struts between the wing and the landing gear.

FLYING

For power, use one loop of 1/8" flat rubber. The plane is very light, and for this reason we encourage you to make your first experiments indoors. No harm will come to the B. L. Sailor if he was built as directed. And if he wasn't, there is still time to correct the trouble. Glide the model several times. Try the various adjustments made possible by warping the elevator and rudder. Then try a few take-off flights with about 30 turns in the motor. When the skip perks indoors to your satisfaction, take it outside—providing that the wind is not too strong—and let 'er ride!

And remember that a sailor enlists for four years. See how long you can keep your Bow-Legged Sailor in service.
FLY THIS "BOW-LEGGED SAILOR"—Plate 1

EYELETS
WASHERS
.028 WIRE
BODY 1/8" SHEET BALSA

ALUMINUM TUBING
1/16" O.D.

STRUT
1/8" SHEET BALSA

WING STRUT
1/8" x 5/32"

Balsa Wheel

PROP BLOCK 5/8" x 7/8" x 6"

.034 WIRE

A FLYING ACES MAGAZINE PLAN